1,713 research outputs found

    Enhanced Laboratory X-ray Particle Tracking Velocimetry With Newly Developed Tungsten-Coated O(50 μ\mum) Tracers

    Full text link
    Tracer particles designed specifically for X-ray particle tracking and imaging velocimetry (XPTV and XPIV) are necessary to widen the range of flows that can be studied with these techniques. In this study, we demonstrate in-lab XPTV using new, custom-designed OO(50 μ\mum) diameter tungsten-coated hollow carbon spheres and a single energy threshold photon counting detector. To explore the measurement quality enhancement enabled by the new tracer particles and photon counting detector, a well understood Poiseulle pipe flow is measured. The data show agreement with the analytical solution for the depth-averaged velocity profile. The experiment also shows that the tungsten-coated particles achieve higher contrast and are better localized than previously available silver-coated particles, making faster and more precise measurements attainable. The particles are manufactured with a readily scalable chemical vapor deposition process. We further show that laboratory XPTV is practical with currently available energy-resolving photon counting detectors (PCDs), despite their presently lower spatiotemporal resolution compared to scintillating detectors. This finding suggests that energy-thresholding identification of different classes of tracers is feasible, further motivating the exploration of the X-ray tracer particle design space. The latest generation of PCDs are incorporating multiple energy thresholds, and have higher count rate limits. In the near future one could potentially expand on the work presented and track multiple tracer species and scalar fields simultaneously.Comment: Submitted to Experiments in Fluids for consideration for publicatio

    OO(1 kHz) In-Lab X-ray Particle Velocimetry for Multiphase Flows

    Full text link
    We combine X-ray-specific tracer particles, a photon counting detector, and a liquid metal anode X-ray source to achieve OO(1 kHz) X-ray imaging speeds in the laboratory, 15×\times faster than previous comparable studies. To demonstrate the capabilities of these imaging speeds, we conduct three experiments: 2D and 3D X-ray particle tracking velocimetry (XPTV) of Poiseuille pipe flow, 3D XPTV of flow around a Taylor bubble, and 3D scalar mixing with a laminar jet. These experiments demonstrate the performance improvement of combining the aforementioned elements, the applicability to multiphase flows and deforming systems, and the potential to capture scalar and vector quantities simultaneously. Most importantly, these experiments are conducted in the laboratory, showing that in-lab X-ray particle velocimetry techniques are now usable for a wider range of flows of interest

    National Art Library: Services and Expansion

    Get PDF
    The goal of this report is to assist the National Art Library with their upcoming expansion and refurbishment. We performed case studies of comparable institutions, conducted interviews with Library Staff, and researched products related to library management and technological displays. We were then able to provide our sponsor with a number of recommendations to improve the quality of service to the current customers and to broaden the user base during the re-opening the West Room

    Ultraviolet and Optical Observations of OB Associations and Field Stars in the Southwest Region of the Large Magellanic Cloud

    Full text link
    Using photometry from the Ultraviolet Imaging Telescope (UIT) and photometry and spectroscopy from three ground-based optical datasets we have analyzed the stellar content of OB associations and field areas in and around the regions N 79, N 81, N 83, and N 94 in the LMC. We compare data for the OB association Lucke-Hodge 2 (LH 2) to determine how strongly the initial mass function (IMF) may depend on different photometric reductions and calibrations. We also correct for the background contribution of field stars, showing the importance of correcting for field star contamination in determinations of the IMF of star formation regions. It is possible that even in the case of an universal IMF, the variability of the density of background stars could be the dominant factor creating the differences between calculated IMFs for OB associations. We have also combined the UIT data with the Magellanic Cloud Photometric Survey to study the distribution of the candidate O-type stars in the field. We find a significant fraction, roughly half, of the candidate O-type stars are found in field regions, far from any obvious OB associations. These stars are greater than 2 arcmin (30 pc) from the boundaries of existing OB associations in the region, which is a distance greater than most O-type stars with typical dispersion velocities will travel in their lifetimes. The origin of these massive field stars (either as runaways, members of low-density star-forming regions, or examples of isolated massive star formation) will have to be determined by further observations and analysis.Comment: 16 pages, 10 figures (19 PostScript files), tabular data + header file for Table 1 (2 ASCII files). File format is LaTeX/AASTeX v.502 using the emulateapj5 preprint style (included). Also available at http://www.boulder.swri.edu/~joel/papers.html . To appear in the February 2001 issue of the Astronomical Journa

    Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach

    Get PDF
    In this work, we consider a general form of noisy compressive sensing (CS) when there is uncertainty in the measurement matrix as well as in the measurements. Matrix uncertainty is motivated by practical cases in which there are imperfections or unknown calibration parameters in the signal acquisition hardware. While previous work has focused on analyzing and extending classical CS algorithms like the LASSO and Dantzig selector for this problem setting, we propose a new algorithm whose goal is either minimization of mean-squared error or maximization of posterior probability in the presence of these uncertainties. In particular, we extend the Approximate Message Passing (AMP) approach originally proposed by Donoho, Maleki, and Montanari, and recently generalized by Rangan, to the case of probabilistic uncertainties in the elements of the measurement matrix. Empirically, we show that our approach performs near oracle bounds. We then show that our matrix-uncertain AMP can be applied in an alternating fashion to learn both the unknown measurement matrix and signal vector. We also present a simple analysis showing that, for suitably large systems, it suffices to treat uniform matrix uncertainty as additive white Gaussian noise

    A Protocol for the Administration of Real-Time fMRI Neurofeedback Training

    Get PDF
    Neurologic disorders are characterized by abnormal cellular-, molecular-, and circuit-level functions in the brain. New methods to induce and control neuroplastic processes and correct abnormal function, or even shift functions from damaged tissue to physiologically healthy brain regions, hold the potential to dramatically improve overall health. Of the current neuroplastic interventions in development, neurofeedback training (NFT) from functional Magnetic Resonance Imaging (fMRI) has the advantages of being completely non-invasive, non-pharmacologic, and spatially localized to target brain regions, as well as having no known side effects. Furthermore, NFT techniques, initially developed using fMRI, can often be translated to exercises that can be performed outside of the scanner without the aid of medical professionals or sophisticated medical equipment. In fMRI NFT, the fMRI signal is measured from specific regions of the brain, processed, and presented to the participant in real-time. Through training, self-directed mental processing techniques, that regulate this signal and its underlying neurophysiologic correlates, are developed. FMRI NFT has been used to train volitional control over a wide range of brain regions with implications for several different cognitive, behavioral, and motor systems. Additionally, fMRI NFT has shown promise in a broad range of applications such as the treatment of neurologic disorders and the augmentation of baseline human performance. In this article, we present an fMRI NFT protocol developed at our institution for modulation of both healthy and abnormal brain function, as well as examples of using the method to target both cognitive and auditory regions of the brain

    Measuring and Correcting Wind-Induced Pointing Errors of the Green Bank Telescope Using an Optical Quadrant Detector

    Full text link
    Wind-induced pointing errors are a serious concern for large-aperture high-frequency radio telescopes. In this paper, we describe the implementation of an optical quadrant detector instrument that can detect and provide a correction signal for wind-induced pointing errors on the 100m diameter Green Bank Telescope (GBT). The instrument was calibrated using a combination of astronomical measurements and metrology. We find that the main wind-induced pointing errors on time scales of minutes are caused by the feedarm being blown along the direction of the wind vector. We also find that wind-induced structural excitation is virtually non-existent. We have implemented offline software to apply pointing corrections to the data from imaging instruments such as the MUSTANG 3.3 mm bolometer array, which can recover ~70% of sensitivity lost due to wind-induced pointing errors. We have also performed preliminary tests that show great promise for correcting these pointing errors in real-time using the telescope's subreflector servo system in combination with the quadrant detector signal.Comment: 17 pages, 11 figures; accepted for publication in PAS

    New Insights into Amino Acid Preservation in the Early Oceans Using Modern Analytical Techniques

    Get PDF
    Protein- and non-protein-amino acids likely occupied the oceans at the time of the origin and evolution of life. Primordial soup-, hydrothermal vent-, and meteoritic-processes likely contributed to this early chemical inventory. Prebiotic synthesis and carbonaceous meteorite studies suggest that non-protein amino acids were likely more abundant than their protein-counterparts. Amino acid preservation before abiotic and biotic destruction is key to biomarker availability in paleoenvironments and remains an important uncertainty. To constrain primitive amino acid lifetimes, a 1992 archived seawater/beach sand mixture was spiked with D,L-alanine, D,L-valine (Val), alpha-aminoisobutyric acid (alpha-AIB), D,L-isovaline (Iva), and glycine (Gly). Analysis by high performance liquid chromatography with fluorescence detection (HPLC-FD) showed that only D-Val and non-protein amino acids were abundant after 2250 days. The mixture was re-analyzed in 2012 using HPLC-FD and a triple quadrupole mass spectrometer (QqQ-MS). The analytical results 20 years after the inception of the experiment were strikingly similar to those after 2250 days. To confirm that viable microorganisms were still present, the mixture was re-spiked with Gly in 2012. Aliquots were collected immediately after spiking, and at 5- and 9-month intervals thereafter. Final HPLC-FD/QqQ-MS analyses were performed in 2014. The 2014 analyses revealed that only alpha-AIB, D,L-Iva, and D-Val remained abundant. The disappearance of Gly indicated that microorganisms still lived in the mixture and were capable of consuming protein amino acids. These findings demonstrate that non-protein amino acids are minimally impacted by biological degradation and thus have very long lifetimes under these conditions. Primitive non-protein amino acids from terrestrial synthesis, or meteorite in-fall, likely experienced great-er preservation than protein amino acids in paleo-oceanic environments. Such robust molecules may have reached a steady state concentration dependent on ocean circulation through hydrothermal systems and synthetic input processes. We are presently trying to estimate this concentration

    Prebiotic Synthesis of Methionine and Other Sulfur-Containing Organic Compounds on the Primitive Earth: A Contemporary Reassessment Based on an Unpublished 1958 Stanley Miller Experiment

    Get PDF
    Original extracts from an unpublished 1958 experiment conducted by the late Stanley L. Miller were recently found and analyzed using modern state-of-the-art analytical methods. The extracts were produced by the action of an electric discharge on a mixture of methane (CH4), hydrogen sulfide (H2S), ammonia (NH3), and carbon dioxide (CO2). Racemic methionine was formed in significant yields, together with other sulfur-bearing organic compounds. The formation of methionine and other compounds from a model prebiotic atmosphere that contained H2S suggests that this type of synthesis is robust under reducing conditions, which may have existed either in the global primitive atmosphere or in localized volcanic environments on the early Earth. The presence of a wide array of sulfur-containing organic compounds produced by the decomposition of methionine and cysteine indicates that in addition to abiotic synthetic processes, degradation of organic compounds on the primordial Earth could have been important in diversifying the inventory of molecules of biochemical significance not readily formed from other abiotic reactions, or derived from extraterrestrial delivery
    • …
    corecore